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Abstract
Engineering computational fluid dynamics (CFD)

analysis and design applications focus on output func-
tions (e.g., lift, drag). Errors in these output functions
are generally unknown and conservatively accurate so-
lutions may be computed. Computable error estimates
can offer the possibility to minimize computational
work for a prescribed error tolerance. Such an esti-
mate can be computed by solving the flow equations
and the linear adjoint problem for the functional of
interest. The computational mesh can be modified
to minimize the uncertainty of a computed error es-
timate. This robust mesh-adaptation procedure au-
tomatically terminates when the simulation is within
a user specified error tolerance. This procedure for
estimating and adapting to error in a functional is
demonstrated for three-dimensional Euler problems.
An adaptive mesh procedure that links to a Computer
Aided Design (CAD) surface representation is demon-
strated for wing, wing-body, and extruded high lift
airfoil configurations. The error estimation and adap-
tation procedure yielded corrected functions that are
as accurate as functions calculated on uniformly re-
fined grids with ten times as many grid points.

Introduction
Engineering problems commonly require computa-

tional fluid dynamics (CFD) solutions with functional
outputs of specified accuracy. The computational re-
sources available for these solutions are often limited
and errors in solutions and outputs are often unknown.
CFD solutions may be computed with an unnecessarily
large number of grid points (and associated high cost)
to ensure that the outputs are computed to within a
required accuracy. A method to estimate the error
present in a computed functional offers the possibility
to avoid the use of overly refined grids to guarantee
accuracy.

Unstructured grid technology promises easier initial
grid generation for novel complex three-dimensional
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(3D) configurations compared with structured grid
techniques. The use of unstructured grid technology
for CFD simulations allows more freedom in adapt-
ing the discretization of the meshes to improve the
fidelity of the simulation. Many previous efforts have
attempted to tailor the discretizations of unstructured
meshes to increase solution accuracy while reducing
computational cost.1–8

Most of these adaptive methods focus on modifying
discretizations to reduce local equation errors. These
local errors are not guaranteed to directly impact er-
ror in global output functions. These methods, often
referred to as feature-based adaptation, focus on re-
solving discontinuities or strong gradients in the flow
field. Flow features (e.g., shocks) can be in the in-
correct location due to errors elsewhere in the flow
field. Also, resolving the flow in a location may have a
minimal effect upon the output function (e.g., a down-
stream shock).

If the flow equations are linearized about the flow so-
lution, the solution of a linear dual problem can yield a
direct measure of the impact of local primal (flow equa-
tion) residual on a selected functional output. The
combination of the primal and dual problems can also
be applied to yield a correction to a specified func-
tional on a given mesh. If a specified error tolerance
in an output function is required, the cost of comput-
ing a CFD solution can be minimized by adapting the
discretization of the problem to directly minimize un-
certainties in the corrected output function of interest.
Also, the entire adaptive simulation can be terminated
when the predicted error is equal to a specified toler-
ance, preventing the waste of computational work on
an overly large mesh.

There are many examples of these techniques in the
finite element communities.9,10 Pierce and Giles11 ap-
plied these methods to finite-volume discretizations.
Venditti and Darmofal12,13 have demonstrated these
methods for compressible two-dimensional (2D) invis-
cid and viscous flow solutions. The present study is
essentially a 3D extension of the methods of Venditti
and Darmofal13 that adapts the mesh to reduce uncer-
tainty in an error correction. Müller and Giles14 have
also presented results for a similar approach utilizing
a different adaptation parameter that directly targets
the error correction.

The use of adjoint variables (solution of the dual
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problem) is an efficient method for computing deriva-
tives of a functional of interest for gradient-based
design methods. Some examples of discrete adjoint de-
sign methods are given in Nielsen and Anderson.15,16

The discrete dual problem for adjoint variables can be
expensive. However, the adjoint solution is already
available for use during the aerodynamic design pro-
cess, so it could be employed for simultaneous design,
error prediction, and grid adaptation.

The combination of adjoint-based grid adaptation
and design techniques can yield an attractive tool
for the aerodynamic design of new configurations.
Adjoint-based error prediction and adaptation can
yield smaller meshes than traditional feature-based
schemes with computable error estimates on out-
put functions. Design processes require analysis and
derivative evaluation tools that operate with mini-
mal human interaction. Robust, automatic adaptation
techniques enable the increased use of nonlinear flow
calculations in larger multidisciplinary design frame-
works. These new techniques will enable efficient
analysis for existing configurations and expanded ex-
ploration of design spaces for new configurations.

Flow Equations

The FUN3D17–19† (Fully Unstructured Navier-
Stokes Three-Dimensional) suite of codes is employed
in this study. The compressible flow solver employs
an unstructured finite-volume tetrahedral method for
conserved variables, Q, i.e.,

Q = [ρ ρu ρv ρw E]T (1)

where ρ is density, u, v, and w are velocity, and E is
total energy per unit volume. The incompressible flow
solver employs the following state variables:

Q = [p u v w]T (2)

where p is pressure. The node-based variables Q are
computed by driving the flow equation residual R to
steady-state with an implicit point-iterative method.
The code is able to solve incompressible, Euler, and
Reynolds-Averaged Navier-Stokes (RANS) flow equa-
tions loosely coupled to the Spalart-Allmaras20 one-
equation turbulence model. The present study em-
ploys only the Euler and incompressible equations.
The solution of Q allows the calculation of integral
quantities f (e.g., lift, drag). To speed execution, the
problem domain is decomposed and the flow and the
adjoint problems are solved with a parallel execution
scheme utilizing the Message Passing Interface (MPI)
standard. The FUN3D suite of codes is being extended
to the HEFSS (High Energy Flow Solver Synthesis)21

modular framework of FORTRAN 90 shared libraries.

†http://fun3d.larc.nasa.gov

Adjoint Equations
After the flow solution is known, the discrete ad-

joint equations15,18, 19 are solved to complete the dual
problem. The first step is to linearize the flow equation
residual R and output function f with respect to the
flow solution Q. After this linearization, an adjoint
variable λ is solved for each of the flow equations.

An abbreviated derivation, adapted from Taylor et
al.,22 is below. The chain rule for the linearized output
function is

∂f

∂Q
=
(
∂f

∂R

)T
∂R
∂Q

(3)

The adjoint variable λ is defined as the effect of the
flow residual on the output function:

∂f

∂R
= λ (4)

A set of linear equations is solved to find λ:(
∂R
∂Q

)T
λ =

(
∂f

∂Q

)T
(5)

After the flow solution is known, this set of linear equa-
tions is solved with GMRES.23 See Refs. 15,16, and 19
for details. A implicit point-iterative time-marching
method is employed to compute the adjoint solution
for the high lift configuration.24–26

Error Correction
The error prediction and correction scheme is taken

from Ref. 13. With a solution on a mesh of reasonable
size Q0, it is desirable to predict the value of an out-
put function evaluated with a solution on a much finer
mesh f(Q∗). This prediction can be computed with-
out the solution on this finer mesh when the adjoint
solution on this reasonable mesh λ0 is utilized. The
full derivation of the error correction term is available
in Refs. 11, 13, 14. An abbreviated derivation is pre-
sented by expanding the Taylor series about f(Q0),
i.e.,

f(Q∗) = f(Q0) +
(
∂f

∂R

∣∣∣∣
0

)T (
R(Q∗)−R(Q0)

)
+ . . .

(6)
Employing eq. (4) and assuming that the residual

on the much finer mesh is zero yields an improved es-
timate for the functional of interest fest:

∂f

∂R

∣∣∣∣
0

= λ0 (7)

R(Q∗) = 0 (8)

f(Q∗) ≈ fest = f(Q0)− (λ0)TR(Q0) (9)

To improve the prediction of the functional fest, Q0

and λ0 can be interpolated to an embedded mesh. In-
terpolation is performed in two ways for this study:
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a linear interpolation (QL,λL) and a higher order in-
terpolation (QH ,λH). Details of this interpolation and
the construction of this embedded mesh are in the “In-
terpolation Techniques” and “Embedded Mesh” sec-
tions. Substituting these interpolated quantities into
eq. (9) yields the linear and higher order functional
estimates fLest and fHest:

fLest = f(QL)− (λL)TR(QL) (10)

fHest = f(QH)− (λH)TR(QH) (11)

Adaptation Parameter
The adaptation parameter, also from Ref. 13, is in-

tended to specify a grid spacing modification to reduce
the uncertainty in the computed error prediction. The
grid is not modified to directly reduce the computed
error prediction (as in Ref. 14) because an estimate for
the functional including this error term can be com-
puted with eq. (9). Instead, targeting the uncertainty
in this computed quantity is more effective and im-
proves the robustness of the adaptive process. The
error correction (eq. (9)) including the uncertainty in
the dual solution is

f(Q0)− f(Q∗) ≈ (λ0)TR(Q0) + (λ∗ − λ0)TR(Q0)
(12)

The uncertainty in the computed error correction is

fest − f(Q∗) ≈ (λ∗ − λ0)TR(Q0) (13)

The relation of the primal and dual problems11,13

yields another expression for the error correction un-
certainty

(λ∗ − λ0)TR(Q0) = Rλ(λ0)(Q∗ −Q0)T (14)

Where Rλ(λ) is the residual of the dual problem:

Rλ(λ) =
(
∂R
∂Q

)T
−
(
∂f

∂Q

)T
λ (15)

A computable term is found by using the interpolation
error of λ to replace (λ∗ − λ0) and the interpolation
error of Q to replace (Q∗ − Q0). The higher order
interpolate for Q0 and λ0 is employed to improve pre-
diction in place of the linear interpolate in Ref. 13.
The interpolation error is expressed as the difference
in the high-order and linear interpolated values:

(λ∗ − λ0) ≈ (λH − λL) (16)

(Q∗ −Q0) ≈ (QH −QL) (17)

The average of the absolute values of the two uncer-
tainty terms in eq. (14) yields the adaptation intensity
I, which is computed for each equation on each em-
bedded node:

I =

∣∣(λH − λL)TR(QH)
∣∣+
∣∣Rλ(λH)(QH −QL)T

∣∣
2

(18)

The intensity I is therefore the average of a primal
residual weighted with a dual solution interpolation
error and a dual problem residual weighted with a
primal solution interpolation error. This form of the
adaptation intensity tends to focus on the nonlinear
contributions to the function error, which increases ro-
bustness of the adaptation method.

Error Correction and Adaptation
Process

The error correction and adaptation process begins
with an initial tetrahedral mesh, which can come from
any mesh generation system. The state variables are
computed as the nonlinear solution to the flow equa-
tions on the initial mesh. The adjoint variables are
then computed with the linearized flow equations at
the flow solution. These flow and adjoint solution pro-
cedures employ a parallel execution scheme. Then the
global problem domain is reconstructed to facilitate
the creation of a finer, embedded grid with interpo-
lated primal and dual solutions.

Embedded Mesh

To compute the error prediction and the adapta-
tion parameter a globally embedded or h-refined mesh
is created. To construct the embedded mesh, a new
node (open circle) is inserted at the midpoint of each
existing edge that connects existing nodes (closed cir-
cles); see Fig. 1(a) and 1(b). Each existing tetrahedron
is subdivided to reconnect these new nodes with eight
interior tetrahedra. (Each of the existing boundary
faces is also divided into four triangles.)

a) Original tetrahedron. b) Embedded tetrahe-
dron.

Fig. 1 Tetrahedron embedding process.

The four new tetrahedra constructed at the corners
of the existing tetrahedron have the same shape as
the original tetrahedron but are smaller in size. The
construction of the four corner tetrahedra leaves an
interior volume with eight faces, which is subdivided
into four tetrahedra. The four interior tetrahedra have
three unique configurations. The configuration with
the lowest maximum dihedral angle is selected.

The new nodes are placed at the midpoints of edges
during the mesh embedding process. The embedded
nodes on the boundaries of the mesh may no longer
remain on the original surface definition of the model.
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When the grid is adapted to improve the discretiza-
tion, the surface fidelity of the mesh is maintained with
boundary node projection.

Interpolation Techniques

The primal and dual solution variables y, which are
all elements of Q and λ, are now interpolated to this
embedded mesh. The value of the solution at each
of the existing nodes is directly copied into the corre-
sponding nodes of the embedded mesh. Each of the
solution variables is interpolated in two ways to form
the linear and the higher order reconstruction for the
new nodes. The higher order reconstruction of the so-
lution for the new nodes requires the computation of
least-squares gradients17 at the existing nodes using
the existing mesh and solution. To simplify the 3D
interpolation, the interpolation is performed by inde-
pendently examining each existing edge in the original
mesh; thus the interpolation problem becomes one-
dimensional along each existing edge. Each existing
edge has an existing node at each edge endpoint and
a new node at the edge midpoint (see Fig. 2).

   
   

   
   

   
 

y
x1, y1, ẏ1

i
y3/2

y
x2, y2, ẏ2

Fig. 2 New node and existing edge.

An edge has two 3D endpoints: x1 and x2. The
vector that represents the length and direction of the
edge is ∆x = x2−x1. The 3D least-squares gradient of
the solution ∆y can be projected to a total derivative
along the edge to facilitate interpolation by

ẏ = ∇yT∆x (19)

The new node interpolation y3/2 can be expressed
as a combination of the solution values and the deriva-
tives at each endpoint (y1, ẏ1, y2, and ẏ2). The linear
interpolation yL3/2 is the average of the two end nodes

yL3/2 =
y1 + y2

2
(20)

The higher order interpolation yH3/2 is found with a
cubic fit of the endpoint data that is evaluated at the
midpoint

yH3/2 =
y1 + y2

2
+
ẏ1 − ẏ2

8
(21)

Equation (21) is equivalent to a least-squares quadratic
fit of the endpoint data that is evaluated at the edge
midpoint.

At the completion of the grid embedding and inter-
polation step, the linear and higher order interpolated
solutions to the primal and dual problems QL, λL,
QH , and λH are available to compute the error cor-
rection and adaptation parameter.

Error Correction and Adaptation Parameter

Once the new embedded grid is constructed with
QL, λL, QH , and λH , it is partitioned to allow paral-
lel calculation of the functional and flow and adjoint
equation residuals. The flow and the adjoint equations
are not iterated or solved on this embedded grid; the
flow state and adjoint variables are interpolated from
the original mesh. Therefore, the only computational
costs on this larger embedded grid are function evalu-
ations, flow and adjoint residual evaluations, and dot
products of vectors. The linear and higher order er-
ror correction term, eq. (10) and (11), is computed at
each node on the embedded mesh and summed over
the entire mesh for all flow equations.

The adaptation intensity, eq. (18), is also computed
at each embedded mesh node. At each node that is
also present in the original mesh, the computed inten-
sity is zero due to the chosen interpolation technique.
The values of the lower and higher order interpolation
schemes are the same at these existing nodes; thus
(QH −QL) and (λH − λL) are exactly zero.

To specify the grid adaptation on the original mesh,
the adaptation intensities must be reduced from the
embedded mesh to the original mesh (I0). The new
nodes on the embedded mesh all lie on existing edges
of the original mesh (see Fig. 1(b)). Therefore, to con-
struct I0 the original mesh is examined one edge at
a time (see Fig. 2). One half of the intensity com-
puted at each new node (which is at the midpoint of
these original edges) is added to each existing node at
the endpoints of these edges. The intensities are also
summed over the equations at this point, resulting in
one intensity value for each original node.

The adaptation parameter, which has been reduced
to the original mesh, is summed to find the global
intensity Ig =

∑
I0. The number of nodes in the orig-

inal mesh n and the user-specified error tolerance t are
combined to scale the adaptation intensity; that is

Is =
Ig
t

n

t
I0 (22)

To perform the grid adaptation, the mesh is locally
enriched in the location of nodes where the scaled
intensity Is is greater than a value, e.i., unity. Ref-
erence 13 demonstrates a way to specify a new el-
ement spacing function. The adaptation procedure
self-terminates as all elements of Is become less than
unity (i.e. no nodes are flagged for adaptation).

Adaptation Mechanics
The adaptation mechanics utilize three independent

modules. The first module inserts new nodes into the
existing mesh and locally reconnects tetrahedra and
boundary faces to maintain a valid tessellation. The
second module employs face and edge swapping to im-
prove the mesh quality. The final module performs
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grid smoothing and boundary node projection opera-
tions.

Node Insertion

The node insertion method is currently one level
of selective h-refinement. To start the refinement, all
the edges surrounding nodes on the original mesh that
have a scaled intensity Is greater than unity are flagged
for h-refinement. The set of flagged edges is exam-
ined tetrahedron by tetrahedron and additional edges
are flagged in an attempt to maintain grid quality
(i.e., low maximum dihedral angles, few high-degree
nodes). The final set of flagged edges results in tetra-
hedra with one edge, three edges on one face, or all six
edges flagged. A tetrahedron with all six edges flagged
is illustrated in Fig. 1(b). The mesh is then h-refined
by inserting new nodes on the midpoint of the flagged
edges and reconnecting these nodes into new tetrahe-
dra and boundary faces.

Face and Edge Swapping

The current post-adaptation grid-improvement
scheme employs face and edge swapping.27 The swap-
ping algorithm minimizes a shape (cost) function (e.g.,
aspect ratio or dihedral angle). This study sought to
reduce only the cell aspect ratio AR

AR =
1
3

tetrahedral circumsphere radius
tetrahedral in-sphere radius

(23)

Reconnections of tetrahedra with undesirable shape
measures are investigated and new local tetrahedra
configurations with more desirable shape measures
are selected. Edges on boundary faces can also be
swapped. To simplify and speed up the edge swapping
routine, the boundary face information is discarded
and reconstructed at the end of the swapping process.
Smart-Laplacian smoothing28 is used on the interior
nodes. The actual locations of the boundary nodes is
not modified in this module; that modification is per-
formed by the grid smoothing and projection module.

Grid Smoothing and Projection

The inserted boundary nodes may not be located
on the surface geometry of the model to be simulated
since they were inserted at the midpoints of existing
edges. A CAD model is employed to describe the
actual model surface. To regain the surface fidelity
of the mesh, the newly inserted boundary nodes are
projected to the model surface with a CAD interface
package CAPRI (Computational Analysis PRogram-
ing Interface).29,30 The projection of these new nodes
to their location on the CAD surface can result in in-
verted, invalid tetrahedral elements.

A grid node-smoothing algorithm is employed to
facilitate boundary projection without generating in-
valid elements and to improve the overall quality
(shape measure) of the mesh. This post-adaptation
smoothing is similar to Freitag28 and was initially im-

plemented by Brasher and Park.31 This initial imple-
mentation has been extended and coupled to CAPRI,
which utilizes native CAD point projection routines.
Nodes on the boundary are smoothed by moving the
nodes in CAD (u, v) parametric space to improve the
shape measure of adjacent tetrahedra.

As the nodes are projected, the neighboring tetra-
hedra are tested for validity. If invalid tetrahedra
resulted from the projection, the projection distance
of the boundary nodes is reduced until the neighboring
tetrahedra are valid. Then the nodes in the neighbor-
hood of the projected node are smoothed to improve
a quality measure of the adjacent tetrahedra. The
boundary points are then moved into the fully pro-
jected position in a number of iterative cycles.

It is anticipated that grid smoothing in the neigh-
borhood of projected nodes may not adequately re-
gain surface fidelity of anisotropic meshes. A grid-
movement scheme may be required as in Ref. 16. An-
other possibility is a 3D version of mesh restructuring
as in Ref. 32.

Adaptation Module Interaction

The current selective h-refinement technique often
creates high-degree nodes on the border of the adapted
regions. The smoothing algorithm is currently unable
to improve elements that are adjacent to high-degree
nodes. The edge and face swapping techniques effec-
tively improve shape measures and reduce the number
of high-degree nodes, facilitating projection and node
smoothing.

These three adaptation modules where developed
independently to facilitate a quick initial implementa-
tion and to investigate the strengths and weaknesses
of each technique. Merging the abilities of these three
separate modules will allow for more flexible modifica-
tions of grids (e.g., point insertion, point removal, and
anisotropic elements).4,6

Results
Adaptation results are shown for a wing, wing-body,

and high lift configurations. The wing is simulated
with incompressible and transonic flow conditions.
The wing-body and high lift configurations are sim-
ulated with subsonic flow.

Initial Mesh Generator

The initial meshes for these error prediction and
adaptation studies are generated with the FELISA
mesher4 connected to CAD geometry by CAPRI
through the GridEx33 framework. FELISA is a Delau-
nay mesh generator with an advancing-front method
for inserting nodes. The GridEx framework is cur-
rently being developed at NASA Langley Research
Center to link various grid generation and adaptation
strategies to geometry through CAPRI. This frame-
work is also utilized in a batch mode to perform uni-
form grid refinement studies.
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a) Initial ONERA M6 mesh.

b) ONERA M6 mesh adapted to incompressible drag.

Fig. 3 Initial and adapted ONERA M6 meshes.

Drag Adaptation – Incompressible ONERA M6

The initial mesh for an ONERA (Office National
d’Etudes et de Recherches Aérospatiales) M6 wing
with 5227 nodes is shown in Fig. 3(a). The mesh
has extremely coarse spacing, especially at the trailing
edge and is intended to resolve the surface curvature of
the leading edge and the wingtip and not any particu-
lar flow features. The spacing function for this mesh is
specified manually and is intended to be representative
of an automated curvature or maximum chord-height
specification. The CAD geometry is represented with
the CAPRI native kernel FELISA with a part gener-
ated from a surface IGES definition.

The initial ONERA M6 mesh was used in the grid
adaptation process with incompressible flow at an an-
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Fig. 4 Coefficient of drag for the ONERA M6
adapted to incompressible drag.

gle of attack of 0 deg. Directly computed drag and
estimates of drag for an ONERA M6 wing as a func-
tion of number of nodes is shown in the Fig. 4 log-log
plot. The adaptation and error correction results are
shown for a drag error tolerance of 0.001. The directly
computed drag on the adapted meshes is represented
by the solid lines with circular symbols. The error-
corrected drag calculated with the linear interpolated
solution fLest is represented by a dashed line and square
symbols. The estimated functional calculated with the
higher order interpolated solution fHest is represented
by a dashed line and diamond symbols. The correct
drag is zero because of non-lifting, subcritical, invis-
cid flow. Therefore, the y-axis denoted “Coefficient of
Drag” is also the error in drag.

The triangle labeled “Second-Order Slope” in Fig. 4
illustrates second-order spatial convergence. The
adaptive-grid method results in drag calculations
that converge at a much higher rate than the
asymptotic convergence rate of uniform refinement
(second-order). The adaptive procedure correctly self-
terminated when the drag error of the adapted flow
solution reached the user specified error tolerance (dot-
dash line).

The final grid (454 thousand nodes) after five cycles
of grid adaptation to incompressible drag is shown in
Fig. 3(b). The adaptation process clustered grid points
at the leading and trailing edges of the wing. Points
are also clustered in the neighborhood of the stagna-
tion stream line.

The tetrahedra shape measure AR (eq. 23) is min-
imized by the mesh improvement algorithm. The
boundary node smoothing algorithm is intended to op-
timize the shape measures of the tetrahedral elements.
Therefore, the shape measures of the boundary faces
depicted in this surface plot may not be optimal.
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Fig. 5 Coefficient of drag for the uniformly refined
ONERA M6 at 0.84 Mach.

Drag Adaptation – Transonic ONERA M6

A uniform refinement of the ONERA M6 wing mesh
is computed at 0.84 Mach and an angle of attack of 3
deg. The drag directly computed by the flow solver
is shown with linear and higher order interpolated er-
ror corrections as a function of the number of nodes
in Fig. 5(a). The extrapolated (grid-converged) drag
value for Fig. 5(a) was estimated with Richardson ex-
trapolation from Fig. 5(b). These meshes have the
same spacing function as Fig. 3(a) globally modified
with a scalar to uniformly reduce the element spac-
ing. These grids were generated with the batch version
of GridEx using the FELISA mesher and CAPRI for
CAD geometry access.

Figure 5(b) shows drag and estimates of drag as
a function of element size for the uniform grid re-
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a) One level of h-refinement.
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b) Two levels of h-refinement.

Fig. 6 Coefficient of drag for the drag adapted
ONERA M6 at 0.84 Mach.

finement of the ONERA M6 wing. A representative
element length h was estimated by computing the cube
root of the number of nodes. This length was nor-
malized by the estimated length of the 624 thousand
node mesh h0. The symbols are drag computed by
the flow solver and error corrected values. A linear
fit of the data at (h0/h)2 = 1.0 and (h0/h)2 = 1.7
is used to estimate the grid-converged answer for all
three schemes. All three schemes indicate a similar
grid-resolved value. An additional flow solution (1.2
million nodes, (h0/h)2 = 0.6) is shown to verify the
accuracy of the linear fit; it was not used to construct
the linear fit of the computed drag. An improved in-
terpolation scheme for the error correction would yield
a superconvergent functional estimate as in Ref. 11.

The initial coarse mesh shown in Fig. 3(a) is em-
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X

YZ

a) Upper wing surface mesh.

X

YZ

b) Upper wing surface Mach contours.

Fig. 7 Initial ONERA M6 upper wing surface.

ployed in the error prediction and grid adaptation
procedure with two different adaptation methods. The
coefficient of drag is plotted as a function of mesh size
in Fig. 6. The user specified error tolerance in drag
is 0.0019. The uniformly refined flow solution from
Fig. 5(a) is shown with the adapted grid flow solu-
tion and higher order error prediction of the adapted
grid in Fig. 6. Figure 6(a) demonstrates a single level
of h-refinement for all nodes with a scaled adaptation
intensity Is greater than one. Figure 6(b) shows h-
refinement for Is greater than one and a recursive call
to the adaptation mechanics for Is greater than 75,
yielding two levels of h-refinement at each adaptation
cycle. The initial convergence of the function is better
in Fig. 6(b) than Fig. 6(a). This improvement in func-

X

YZ

a) Upper wing surface mesh.

X

YZ

b) Upper wing surface Mach contours.

Fig. 8 Final ONERA M6 upper wing surface,
adapted with one level of h-refinement.

tion convergence is illustrating the limitations of using
a single level of selective h-refinement as the adap-
tive node-insertion procedure. The use of two levels of
h-refinement better approximates a continuous vari-
ation in element size. The two adaptation methods
converged to similar meshes and drag values.

The upper wing surface grid and Mach contours
of the initial flow field computed on the mesh from
Fig. 3(a) is shown in Fig. 7. The shocks in this
initial grid are poorly resolved. The mesh (357 thou-
sand nodes) and Mach contours of the ONERA M6
adapted to drag with one level of selective h-refinement
is shown in Fig. 8. The mesh (374 thousand nodes)
and Mach contours of the ONERA M6 adapted to
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X

YZ

a) Upper wing surface mesh.

X

YZ

b) Upper wing surface Mach contours.

Fig. 9 Final ONERA M6 upper wing surface,
adapted with two levels of h-refinement.

drag with two levels of selective h-refinement is shown
in Fig. 8. The final meshes and solutions are simi-
lar for both of the adaptation methods. The adaptive
procedure strongly clustered nodes at the leading and
trailing edges of the wing and lightly clustered nodes
at the shock location on the upper surface. Feature-
based adaptations of this configuration in Ref. 7 and 8
focused on the leading edge and shock locations, but
not the trailing edge.

Lift Adaptation – EET

The EET (Energy Efficient Transport)34 initial
coarse mesh is shown in Fig. 10. The initial grid spac-
ing distribution is specified manually to resolve the

X

Y

Z

Fig. 10 Initial EET grid.
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Fig. 11 Coefficient of lift for the lift-adapted EET
at 0.40 Mach.

surface details of the fuselage, wing leading edge, blunt
trailing edge, and the wingtip. The geometry is repre-
sented with a Parasolid CAD kernel accessed though
the CAPRI application program interface (API).

The initial coarse mesh shown in Fig. 10 is employed
in the lift error prediction and grid adaptation proce-
dure at 0.40 Mach an angle of attack of 2 deg. The
lift coefficient is plotted as a function of mesh size
in Fig. 11. The adaptive procedure has a user speci-
fied error tolerance of 0.1 for the lift coefficient error.
The uniformly refined lift calculation is shown with the
adapted grid lift calculation and error predictions on
the adapted grid in Fig. 11. The Richardson extrapo-
lation value is not shown because a reasonable linear
fit of the last three points was not possible. The lift
coefficient is calculated on an adapted mesh one-tenth
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Fig. 12 Initial 30P-30N grid.
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a) Initial 30P-30N grid.
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b) Lift-adapted 30P-30N
grid.

Fig. 13 Original and adapted 30P-30N symmetry
plane grids.

the size of the uniformly refined grid. The adapted lift
error is well within the user specified tolerance.

Lift Adaptation – 30P-30N Airfoil

The McDonnell Douglas 30P-30N airfoil initial
coarse mesh is shown in Fig. 12. The 30P-30N airfoil
is extruded between two symmetry planes. The near-
plane has been removed to improve visualization. The
geometry is represented with a Parasolid CAD kernel
accessed though the CAPRI API. This configuration
is the subject of a recent 3D CFD study.35

The geometry and initial coarse mesh (113 thousand
nodes) shown in Fig. 12 is employed in the error pre-
diction and grid adaptation procedure at 0.20 Mach
and an angle of attack of 16.3 deg. The lift adaptive
procedure has a user specified error in lift of 0.25. The
uniformly refined grid flow solution, adapted grid flow
solution, linear error prediction, and higher order er-
ror prediction are shown in Fig. 14. The extrapolated
coefficient of lift value was computed with a Richard-
son extrapolation of the finest two uniformly refined
solutions. The original symmetry plane grid and the
symmetry plane grid (832 thousand nodes) after two
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Fig. 14 Coefficient of lift for the lift-adapted 30P-
30N at 0.20 Mach.

cycles of adaptation is shown in Fig. 13.
Table 1 shows the aspect ratio AR (eq. 23) for the

initial and the adapted grids. The AR is the cost

Table 1 Shape measure for the 30P-30N adapta-
tion

Cycle Aspect ratio AR Face angle
max max

1 8.1 154.3
2 5.0 158.1
3 7.5 167.8

function for the grid-improvement optimizer. The face
(dihedral) angle is not directly controlled but could be
added as a constraint.

Conclusion
The initial implementation of an adjoint-based error

correction and adaptation method has been demon-
strated in three dimensions. With a given flow and
adjoint solution, the error correction for a functional
and adaptation intensity term have been described.
The adaptation intensity was formulated to reduce the
uncertainty in the error correction of a global func-
tional and not a local error estimate as in a feature-
based adaptation scheme. The adaptive procedure
automatically terminates the simulation when an user
specified tolerance is satisfied. The error remaining in
the simulation at termination was always within the
user specified tolerance, although sometimes the sim-
ulation was overly accurate.

A wing configuration was adapted to reduce drag
error in incompressible and transonic flow. The drag
computed by this adaptation and error correction
method was shown to be as accurate as direct flow
calculations using larger uniformly refined grids. The
initial convergence of adaptation procedure improved
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with two levels of h-refinement at each adaptation
cycle. Lift adaptations of Parasolid CAD models of
wing-body and high lift configurations demonstrate
the utility of this adaptive methodology on complex
geometries. The lift of the wing-body configuration
was computed on an adapted grid that is one-tenth
the size of an uniformly refined grid.
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